网上科普有关“实验研究法的简介”话题很是火热,小编也是针对实验研究法的简介寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
实验研究是一种受控的研究方法,通过一个或多个变量的变化来评估它对一个或多个变量产生的效应。实验的主要目的是建立变量间的因果关系,一般的做法是研究者预先提出一种因果关系的尝试性假设,然后通过实验操作来进行检验
实验研究方法涉及的概念主要有:变量、实验处理与实验变异、前测与后测、实验组与对照组、配对与随机化。
1.什么是假设
你研究的问题一旦明确被界定后,就应建立研究假设。所谓研究假设,就是根据一定的观察事实和科学知识,对研究的问题提出假定性的看法和说明。其实,研究假设也就是研究问题的暂时答案。因为你通过对周围事物的观察后,会产生一些疑问,进而对这些疑问进行思考,你会根据自己的理解,或查阅有关资料,或请教有关人员,然后提出假设,对你的疑问作一种临时性的回答;假设与定理或结论本没有很大区别,只不过假设是有待证实的定理或结论,定理或结论是已经证实的假设。二者只有程度上的差异,没有性质上的区别。
假设是刚开始研究问题时的看法,具有一定的猜测性和假定性,但假设要有一定的科学依据,有一定的事实或理论根据,假设不是凭空的瞎想,它和神话、幻想、迷信有原则的区别。一个科学假设,必须能被实验所验证的.如当打开开关灯不亮时,可能有几种假设:①停电;②插座接触不良;②保险丝烧断了;④灯泡烧坏了。这些假设的每一种都是可以直接检验的。
假设的形成要靠科学知识。在科学发展中,对同一问题的研究可以出现两种甚至多种不同的假设。这是由于假设所依据的事实材料和科学知识有限或不同,必然会得出不同的假设。中学生已经掌握了一定的科学理论和科学知识,这对于你的研究假设的形成有了一定的科学知识作为基础,但有些知识你还需要去查阅一些资料或向教师、专家咨询才能得到,要知道在查阅资料和请教有关人员的过程中,也是一个扩大知识面的很好的学习机会呢。
在科学研究中,我们常用实验验证某一假设。在实验过程中,常常需要涉及两个概念--常量和变量。
2.什么是常量?
在某一数学或自然科学问题讨论过程中(或在某些条件下)保持不变的量就是常量。例如,圆周率3.14l59,自然对数的底e2.71828,它们都是常量。
在社会科学研究中,常量是指研究课题中所有个体都具有的特征和条件。如比较两种不同教学方法对五年级学生学习成绩效果的研究中,年级水平就是一个常量,因为五年级这一特征对每一个个体都是相同的,它是研究课程中不变的条件。
3.什么是变量?
变量是研究设计初期就要考虑的问题。根据变量发挥的不同作用,可以分为自变量与因变量、缓冲变量、中介变量、外源变量等。
自变量(Independent Variable-IV)是另一变量变化的原因,因变量(Dependent Variable-DV)是自变量作用的结果,它们是最重要的两种变量,一般可以直接或间接在实验中观察。比如在某典型的办公室中,我们想研究四日工作周对办公室的效率产生的影响,可作如下假设:引入四日工作周(IV)将提高办公室的工时效率(DV)。
在实际研究中,很少有这种简单的一对一关系,通常还要考虑其他变量。缓冲变量(Moderating Variable-MV)实际上也是一种自变量,它会对原来设定的IV-DV关系产生重要影响。在上例中,年轻员工可作为一个缓冲变量,从而研究假设可以表述为:引入四日工作周(IV)将提高办公室的工时效率(DV),尤其是对年轻员工(MV)。
中介变量(Intervening Variable-IVV)是自变量对因变量产生作用的媒介,它在理论上能对结果产生影响,但这种影响不能被直接观察、测量或操控,只能通过自变量和缓冲变量和对结果的影响推断出来。在上例中,工作满意度可作为中介变量,从而研究假设可进一步表述为:引入四日工作周(IV)将通过提高工作满意度来(IVV)提高办公室的工时效率(DV),尤其是对年轻员工(MV)。
外源变量(Extraneous Variable-EV)是对研究系统产生影响的变量,它会对系统内部的变量关系产生显著影响。有些外源变量可作为自变量或缓冲变量来处理,但大多数必须进行假定或设法消除其对研究系统的影响,最常用的思路是在实验中对其进行控制。比如在上例中,常规办公室工作可作为外源变量的一个控制状态,从而研究假设可以表述为:在常规办公室工作中(EV-control),引入四日工作周(IV)将通过提高工作满意度来(IVV)提高办公室的工时效率(DV),尤其是对年轻员工(MV)。
在研究设计中,对变量要有严格的操作定义(operational definition),即变量可观察指标的具体陈述。变量操作定义的质量,将直接影响研究的可重复性、结果的可检验性以及研究的普遍意义。
变量一般指研究者操纵、控制或观察的条件或特征。变量也称变数。在数学或自然科学问题的讨论中,可以取不同数值的量。如物体运动所经过的距离就是一个变量。在社会科学研究中,变量指不同的个体具有不同的价值或条件的特征。如研究两种不同教学方法对五年级学生成绩的影响中,每个学生的分数就是一个变量。
变量的种类有很多,常见的有自变量和因变量。自变量和因变量这两个名词是从数学引用过来的。在数学中,y=/(z)这一方程式中的2是自变量,y是变量。因变量是随着自变量的改变而改变的。例如,指示剂颜色的变化是随着溶液的酸碱性的变化而变化当溶液至酸性时,酚酞指示剂呈无色;当溶液呈碱性时,酚酞指示剂呈红色;因此溶液的酸碱性是自变量,而酚指示剂的颜色变化是因变量。
在社会科学研究中,自变量常常是一个分类变量。例如,研究者要研究不同教学方法对学习成绩的影响,是必须先采用不同的教学方法进行教学,然后再测量比较学生的学习成绩的改变。在此例中,不同的教学法是自变量,而学生的学习成绩就是因变量。这里,自量是居于因的地位,因变量是居于果的地位。
让我们先来看一看甲、乙两名学生所进行的工作。
甲、乙两名学生为了回枫树的叶子为什么在秋会变色?这个问题而分别进行了下列工作。
分析季节变化会使枫树的外环境发生哪些方面的变化。结论是:温度、日照时间会随着季节变化而变化。天温度最高,冬天温度最低;夏天日照时间最长,冬天日照时间最短。
提出假设:
A:枫叶变色可能与温度有关。
B:枫叶变色可能与日照时间有关。
C:枫叶变色可能与温度和日照时间这两个因素都有关。
甲学生的工作:
全年观察枫叶的颜色变化,可以选定一棵树,也可以选定许多树。每天收集一片枫叶,然后记下当天的温度、白天时间的长短和枫叶的颜色。为了收集一套数据,他必须等一个全年。为了重复这一结果,他又必须等一个全年。
他的结论只能是:枫叶在秋天这个季节颜色转红,此时温度范围在10一14℃,日照时间平均为l0小时。
通过这种观察,他不能分清究竟是温度还是日照时间在起作用,或二者均在起作用。因为温度和日照时间这两个影响因素同时在发生变化。
如果能控制日照时间,而仅仅让温度变化;或控制温度,仅仅让日照时间变化,进而观察结果,那么,你就能断定究竟是温度影响了枫叶的颜色,还是日照时间影响了枫叶的颜色;或者温度和日照时间都对枫叶颜色有影响,还是二者均没有影响。
那么,如何来控制温度呢?这就是乙学生接下来进行的工作。
乙学生的工作:
设计将温度调节到秋天的温度。
把一棵小枫树种在一个花盆里并放入生长温室。尽管是夏天,室外温度很高,仍旧可以把生长温室调节到秋天的温度,白天约14℃,夜晚约3℃。
设计对比实验:
如果确实看到了叶子颜色的变化,就能确定仅靠温度的变化便能使叶子发生变化吗?毕竟实验室中的树和外界的树还是有差别的,实验中的枫树叶子的变红是不是因为它生长在小的花盆中所引起的呢?是不是因为自然光和温室中的光不一样而引起的呢?
这种不确定性表明必须设计一些更复杂些的实验,至少应该种两棵树。应该选择相似的树,且花盆的大小应该保持一致,把它们放置在相同的温室中,在同一时间浇水。然后,再做这样一个实验,一个保持在正常的夏季温度(22℃),而另一个的温度调节到秋天的温度(14℃)。
乙学生的工作与甲学生的工作有着本质的区别--他注重对影响因素的控制。他所有的实验设计都围绕着这样一个中心进行:控制其他影响因素,只让一个影响因素变化,从而确定是否是该影响因素在起作用。这种实验我们就把它称为受控实验。
乙学生的受控实验设计就是温室A和温室B的设计。
受控实验是自然科学研究中广泛采用的一种研究方法。正是因为有了受控实验,科学才得以突飞猛进的发展。
受控实验的优点在于影响因素是可以被严格控制的,人们可以按照自己的设想去改变条件,探索事物的发展规律。这种控制使得实验可以重复进行、反复验证,从而保证了实验结果不是出于某种巧合而得。
结论:低温不是颜色变化的唯一影响因素,因为在高温情况下,树叶仍旧变色。
这个结论证明甲、乙两学生先前的假设是错误的,这时候必须重新建立新的假设。在科学上否定原先假设,建立新的假设是常有的事,因为许多有关自然界的猜想都被证明是不正确的。但这同时也是科学向前发展的一种方法,因为它指出了进一步实验的方向。例如,如果两种树上的叶子都没有改变颜色的话,那就可能说明温度与树叶的颜色是无关的。或许枫叶变红与白天的时间长短有关,或许与降雨量有关,或许与风的强度有关……这种新的假设又引发了进一步的另一方面的受控实验。经过研究,科学家现在知道,低温和白天时间的长短这两个因素同时影响着枫叶颜色的变化。除此以外,许多科学家认为,枫树本身的生物钟也影响着枫叶颜色的变化。但是生物钟是如何影响枫叶颜色的?是什么样的化学物质触发了生物钟的工作?至今人们还无法给予解答。如果你把生物作为你今后的专业方向,或许你将再一次考虑这一问题。
观察研究法和实验研究法经常合在一起使用,有人称它们为科学研究法。首先是先进行观察,形成假设后,设计实验方案进行实验,最后得出结论。 实验处理(experimental treatment)又称实验刺激(experimental stimulus),它是指研究者为了弄清自变量的变化对因变量的产生的效应,对自变量施加的控制行为。
研究者关心实验处理所引起的因变量的变异,这种变异称为实验变异(experimental variability)。问题在于因变量的变异不只是来自实验处理,测量误差的随机干扰以及未接受实验处理的其他自变量也是引起变异的因素。由于实验处理之外的因素引起的因变量的变异称为外部变异(experimental variability)。实验的难点往往就在于如何消除外部变异而凸显实验变异,或者区分因变量的哪些变异属于实验变异,哪些属于外部变异。这需要引入下面要提到的控制变量和控制组来实现。 分别是指在实验处理之前和之后对实验对象所作的观察或测量,它们可以使我们比较实验处理前后发生的情况,找出因变量发生的变异。但仅有前测和后测还不足以让我判断出实验变异有多大,因为因变量的变异可能包含部分外部变异。这就需要引入控制组。
在实验研究中,接受实验处理的一组研究对象称为实验组(实验组可能有多个),不接受实验处理的一组研究对象称为控制组(控制组也可能有多个)。实验结束时,比较实验组和控制组便可看出实验处理产生的差异,控制组提供了测量实验变异的参考点。实验组和控制组在实验过程中,全都处于同一条件下,只是实验组研究变量接受了实验处理。因变量在实验前后的变化应完全来自研究变量接受实验处理的结果,然而,要判断这种差异是否只来自实验处理,还必须比较实验组和控制组实验结束时的状态。
与控制组有关的一个概念是控制变量(control variable)。控制变量是指实验过程中其值保持不变的自变量,它不同于控制组。采用控制变量的目的是使非研究变量产生的影响最小,而控制组的目的是用于排除各种外部变异源包括研究者未发现的因素对因变量的影响。 为了比较实验组和控制组的状态并确定研究变量产生的影响,两组的组成要素必须尽可能类似,否则,实验结果将是一种混合效应,无法说明问题。为了避免这类问题,使使实验组和控制组的组成要素(样本)具有相同的条件,可以采用配对和随机化两种方式。
配对(matching)是指对研究对象分组时,先找出具有相同属性的两个研究对象,将其中一个分派到实验组,另一个分派到控制组,然后以同样的方法一对一对地分派,直至形成两个组。这样形成的两个组在理论上是完全相同的,但在实践中却很难做到,因为世界不可能存在两个完全相同的研究对象。为了克服这种困难,可采用不太严格的配对法,是两个组在各种特征上的比例大致相同;或者在某一主要影响变量的分布和方差上大致相同。但是,它们不能消除其他未控制因素的影响。配对法在实施中还面临着另外两个困难:一是所考虑的因素不能过多,否则往往难以实施;二是实验前并不知道研究对象的何种变量将影响实验结果。
随机化(randomization)是以随机分派的方式将实验对象分派到实验组和控制组(或各个不同的实验组)。这样,在大样本情况下,按照随机抽样的原则,各个组的实验对象的构成、条件基本相同,外部因素的对其影响也是等同的。即使会出现一些误差,也只可能是抽样误差,而不是系统误差,从而使实验结果凸显出实验处理的效果。随机化无须对研究对象的各种属性进行研究,应用方便,成为最常用的方法。
但在小样本情况下,随机化分配样本也会出现实验组和控制组研究对象不对称的情况。这时可采用配对和随机化相结合的方法即分块法(blocking),样本先按某关键变量配对,然后随机分配。分块后,尽管比随机化分配的情况要好,但是否要分块,取决于分块的复杂程度即其成本。 分类是对事物的一种分析方法。用不同的标准对实验进行分类,就是从不同的角度对实验进行分析,多角度的分析可以使我们对实验的认识更全面、更深入。
根据对变量的控制程度以及实验设计的严格程度,可以将实验分为纯实验(experiment)与准实验(quasi-experiment and semi-experiment)。纯实验是指实验研究人员能够随机地把实验对象分派到实验组或控制组,也可以对实验误差来源加以控制,使得实验结果能够完全归因于自变量改变的实验。准实验是指实验研究人员无法随机分派实验对象到实验组或控制组,也不能完全控制实验误差来源的实验。由于管理问题的复杂性和难控制性以及传统实验的局限性,准实验在管理研究中越来越受到重视。
根据实验的实施场所不同,可以将实验分为实验室实验与实地实验。实验室实验是指在有专门设备的实验室中进行,并对实验的条件、控制以及实验设计都有严格规定的实验。实地实验是指在实际情境中进行的实验,也称现场实验。由于人们对管理研究结果的现实意义或外部效度越来越重视,因而管理研究中的实验越来越倾向于实地实验。实验室实验和实地实验的划分与纯实验和准实验的划分具有很大的一致性。
此外,还可以根据研究的深度把实验分为试探性实验与验证性实验,根据实验的深度或进程将实验划分为预实验与真实验等等。
根据研究火箭飞行的实验,解释火箭为什么能够飞上天?
解:(1)根据v2=2ax可得v= 2ax由于小车每次从同一位置由静止开始下滑,故每次到光电门的速度相同.
而遮光板通过光电门的时间t=d v ,可见遮光板通过光电门的时间越长代表遮光板越宽.故①正确.
显然遮光板越小,遮光板的平均速度越趋近于遮光板前端的速度即越趋近于车头的速度.故④正确.
②④正确故选D.
(2)由于做匀变速直线运动的物体的平均速度等于该段时间内的中点时刻的速度,中点时刻的速度v1=v0+vt 2 =d t 即用遮光板平均速度代替车头通过光电门的速度,而车头到达光电门的速度为v0,,显然v1>v0,故这种测法测量值与真实值相比偏大.故选A.
(3)要测量小车正中间到达光电门时的瞬时速度即遮光板的中间位置的速度,而实际上测的是平均速度即遮光板通过光电门的中间时刻的速度,由于小车越来越快,故中间时刻早于中间位置,故中间时刻的速度小于中间位置的速度,故测量值偏小,故B正确,故选B.
故本题答案为:(1)D;(2)A;(3)B.
火箭飞行原理分析如下.为简单起见,设火箭在自由空间飞行,即它不受引力或空气阻力等外力影响.把某时刻t的火箭(包括火箭体和其中尚存的燃料)作为研究的系统,其总质量为M,以v表示此时刻火箭的速率,则此时刻系统的总动量为Mv(沿空间坐标x轴正向).此后经过dt时间,火箭喷出质量为dm的气体,其喷出速率相对于火箭体为定值u.在t+dt时刻,火箭体的速率增加为v+dv.在此时刻系统的总动量为
dm*(v-u)+(M-dm)(v+dv)
又喷出气体质量dm等于火箭质量的减少,即-dM, 再又动量守恒知:
-dM*(v-u)+(M+dM)(v+dv)=Mv 略去二阶无穷小量dM*dv
udM+Mdv=0
设火箭点火时质量为M(i),初速度v(i),燃料烧完后火箭质量为M(f),达到末速度v(f),对上式移项积分
∫(v(f),v(i)) dv=-u∫(M(f),M(i)) dM/M
得到v(f)-v(i)=u*ln(M(i)/M(f))
此式表面,火箭在燃料燃烧完所增加的速率和喷气速率成正比,也与火箭的始末质量比的自然对数成正比.
接下来研究火箭推力
如果只以火箭本身作为研究的系统,以F表示在时间间隔t到t+dt内喷出气体 对火箭体(质量为(M-dm))的推力,则根据动量定理,应有
Fdt=(M-dm)[(v+dv)-v]=Mdv
将上面已求得的结果Mdv=-udM=udm带入,得到
F=u*dm/dt
此式表面,火箭发动机的推力和燃料燃烧速率dm/dt以及喷出气体的相对速率u成正比.
此外,为了提高火箭的末速度以满足发散地球人造卫星或其他航天器的要求,人们制造了若干单级火箭串联形成的多级火箭(通常是三级火箭)
这些就是你大概能看懂的内容,希望对你有帮助.
关于“实验研究法的简介”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[亦双]投稿,不代表Cali号立场,如若转载,请注明出处:https://calibrary.cn/zsbk/202412-1415.html
评论列表(4条)
我是Cali号的签约作者“亦双”!
希望本篇文章《实验研究法的简介》能对你有所帮助!
本站[Cali号]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育
本文概览:网上科普有关“实验研究法的简介”话题很是火热,小编也是针对实验研究法的简介寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。 实验研究是一...